
What Are The Threats?
(Charting The Threat Models Of Security Ceremonies)

Diego Sempreboni1, Giampaolo Bella2, Rosario Giustolisi3, and Luca Viganò1

1Department of Informatics, King’s College London, UK
2Dipartimento di Informatica, Università di Catania, Italy

3Department of Computer Science, IT University of Copenhagen, Denmark
{diego.sempreboni, luca.vigano}@kcl.ac.uk, giamp@dmi.unict.it, rosg@itu.dk

Keywords: Threat model, Security ceremonies, Formal analysis, Systematic method.

Abstract: We address the fundamental question of what are, and how to define, the threat models for a security protocol
and its expected human users, the latter pair forming a heterogeneous system that is typically called a security
ceremony. Our contribution is the systematic definition of an encompassing method to build the full threat
model chart for security ceremonies, from which one can conveniently reify the specific threat models of
interest for the ceremony under consideration. For concreteness, we demonstrate the application of the method
on three ceremonies that have already been considered in the literature: MP-Auth, Opera Mini and the Danish
Mobilpendlerkort ceremony. We discuss how the full threat model chart suggests some interesting threats that
haven’t been investigated although they are well worth of scrutiny. In particular, one of the threat models
in our chart leads to a novel vulnerability of the Danish Mobilpendlerkort ceremony. We discovered the
vulnerability by analysing this threat model using the formal and automated tool Tamarin, which we employed
to demonstrate the relevance of our method, but it is important to highlight that our method is generic and can
be used with any tool for the analysis of security protocols and ceremonies.

1 INTRODUCTION

1.1 Context and Motivation

There is increasing awareness that security protocols
need better attention to their “human element” than
what is traditionally paid. This trend is confirmed by
recent works, both on the formal and on the practical
level.

Examples of recent works at the formal level are
the work by Bella and Coles-Kemp (Bella and Coles-
Kemp, 2012), who defined a layered model of socio-
technical protocols between a user persona and a
computer interface, the work by Martimiano and Mar-
tina (Martimiano and Martina, 2018), who showed
how a popular security ceremony could be made fail-
safe assuming a weaker threat model than normally
considered in formal analysis and compensating for
that with usability, and the work by Basin et al. (Basin
et al., 2016), who provided a formal account on hu-
man error in front of basic authentication properties
and described how to use the Tamarin tool to that end.
However, as we will illustrate in more detail below,

these works cover only a small portion of the land-
scape of possible threat models, so a transformative
approach is called for.

Examples of recent works at the practical level are
the work by Hall (Hall, 2018), who provided real-
world summaries of weak passwords in use, with
2018’s weakest one still being “123456”, and the
work of Bella et al. (Bella et al., 2018), who focussed
on protocols for secure exams and provided a novel
protocol that they have formally analysed using the
tool ProVerif.

Other relevant works exist. Some stress the threats
deriving from humans, for example humans repeat-
ing a previous sequence of actions without consider-
ing whether it would be currently appropriate (Karlof
et al., 2009), or humans making errors during text en-
try (Soukoreff and MacKenzie, 2001). Others discuss
the human behaviour that may be maliciously induced
by a third party, for example by deception (Mitnick
and Simon, 2001) or by following precise coercion
principles (Stajano and Wilson, 2011).

In this paper, we address the underlying, funda-
mental question of

what are, and how to define, the threat models

for a security protocol and its expected human
users,

the latter pair forming a heterogeneous system that is
typically termed a security ceremony (Ellison, 2007).

While existing works (such as the ones cited
above) define threats that are reasonable, they gener-
ally fail to treat the threats systematically within the
given ceremony, hence potentially missing relevant
combinations of threats. For example, a vulnerability
in a website might be exploited by a specific sequence
of user actions, which an attacking third party would
need to deceive the user to take. This attack cannot
be discussed without admitting a complicated threat
model that combines at the same time (but without
any form of collusion): (i) a bug in the website, (ii) a
user who makes wrong choices and (iii) an active at-
tacker capable of deception.

A huge variety of similar situations may under-
lie modern security ceremonies, and that variety is, in
turn, due to the variety of the ceremonies themselves,
with different levels of intricacies and innumerable
applications, ranging from pre-purchasing a cinema
ticket via the web to obtaining an extended valida-
tion certificate. A remarkable, recent and large-scale,
attack saw the “Norbertvdberg” hacker advertise his
online seed generator iotaseed.io through Google for
a semester; but the generator was bogus, so that Nor-
bertvdberg could hack a number of seeds and harvest
a total of $3.94 million worth of IOTA at the only ex-
tra effort of mounting a DDoS against the IOTA net-
work to prevent investigation. Here, both the hacker
and his website acted maliciously, though arguably in
different ways, mounting a complex socio-technical
attack against both users and the IOTA infrastructure.

Therefore, it is clear that security ceremonies
don’t succumb to the “one threat model to rule them
all” proviso as security protocols traditionally did
with the Dolev-Yao attacker model (Dolev and Yao,
1983). In fact, the Dolev-Yao model has proved to be
very successful for the analysis of security protocols,
where the almighty attacker “rules” over the other
protocol agents who are assumed to behave only as
prescribed by the protocol specification. However, in
the case of security ceremonies such an attacker pro-
vides an inherent “flattening” that likely makes one
miss relevant threat scenarios. By analogy, one could
say that the Dolev-Yao attacker is a powerful ham-
mer... but to a man with a hammer, everything looks
like a nail, forgetting that there are also screws and
nuts and bots (for which a hammer is inadequate).
We advocate that for security ceremonies we need
an approach that provides a birds-eye view, an “over-
view” that allows one to consider what are the differ-
ent threats and where they lie, with the ultimate aim

of finding novel attacks.

1.2 Contributions

The main contribution of this paper is thus
the systematic definition of an encompassing
method to build the full threat model chart for
security ceremonies from which one can con-
veniently reify the threat models of interest for
the ceremony under consideration.

The method starts with a classification of the princi-
pals participating in security ceremonies and contin-
ues with a motivated labelling system for their actions
and principals. Contrarily to some of the mentioned
works, our method abstracts away from the reasons
that determine human actions such as error. It then
continues by systematically combining the principal
labels to derive a number of threat models that, to-
gether, form the full chart of threat models for the
ceremony. We shall see that the higher the number
of principals in a ceremony, the more complicated its
full threat model chart: we shall represent it as a table,
where each line signifies a specific threat model.

For concreteness, we demonstrate the application
of the method on three ceremonies that have already
been considered, albeit at different levels of detail and
analysis, in the literature:
• MP-Auth (Basin et al., 2016; Mannan and van

Oorschot, 2011),
• Opera Mini (Radke et al., 2011)), and
• the Danish Mobilpendlerkort ceremony (Gius-

tolisi, 2017).
We discuss how the full threat model chart suggests
some interesting threats that haven’t been investigated
although they are well worth of scrutiny. In particular,
we find out that the Danish Mobilpendlerkort cere-
mony is vulnerable to the combination of an attack-
ing third party and a malicious phone of the ticket
holder’s. The threat model that leads to this vulner-
ability has not been considered so far and arises here
thanks to our charting method.

To demonstrate the relevance of the chart we mod-
elled and analysed this threat model using the formal
and automated tool Tamarin (Tamarin, 2018), which
enables the unbounded verification of security pro-
tocols, although it is important to highlight that our
method is generic and can be used with any tool for
the analysis of security protocols and ceremonies.

1.3 Organisation

We proceed as follows. In Section 2, we present our
full threat model chart for security ceremonies. In

Section 3 and Section 4, we apply our chart on three
example ceremonies: MP-Auth and Opera-Mini are
discussed in Section 3, whereas we devote the whole
of Section 4 to the Danish Mobilpendlerkort cere-
mony. In Section 5, we take stock and discuss future
work.

2 CHARTING THE THREAT
MODELS OF SECURITY
CEREMONIES

2.1 Principals

The principals that may participate in a security cere-
mony C are

• a number of technical systems,

• a number of humans and

• an attacking third party.

A technical system TechSystemi is one that can
be programmed and works by executing its program.
Depending on the architectural level represented in
the given ceremony, a technical system could be ei-
ther a piece of hardware, say a network node, or of
software, say the program executing on that node. We
envisage zero or more technical systems participating
in the ceremony.

A humans principal Humani may variously inter-
act with other humans or with the technical systems.
For example, Human1 may interact directly with
Human2 in a face-to-face ceremony without technol-
ogy, or with TechSystem1 and TechSystem2, which
may in turn interact between themselves through a se-
curity protocol. As with technical systems, zero or
more humans could participate in the ceremony, and
the case of zero humans would take us back to the
realm of security protocols.

We also consider an attacking third party ATP,
which can be seen as a combination of colluding at-
tackers, in the style of the Dolev-Yao attacker. How-
ever, the ATP is inherently socio-technical, namely it
is capable of interacting both with a human by en-
gaging in human actions, and with a technical system
by engaging in digital communication with it. The
ATP could thus be interpreted as the union of some
Humanx and some TechSystemy; the capabilities of the
ATP will become clearer below.

More formally, the principals of a ceremony C can

be formalised as follows:
Technicals(C) := {TechSystemi | i = 1, . . . ,n}
Humans(C) := {Human j | j = 1, . . . ,m}
ATP(C) := {ATPk | k ≤ 1}
Principals(C) := Technicals(C) ∪

Humans(C) ∪
ATP(C)

where, as is standard, we assume that if n = 0, then C
doesn’t contain any technical system principal. Sim-
ilarly, if m = 0, then C doesn’t contain any human
principal, and if k = 0, then there is no attacking third
party.

2.2 Information and Actions

Principals of a security ceremony exchange informa-
tion of various types, such as a password that a human
may type, a ticket on a smartphone that a human may
show to an inspector, a pdf that a technical system
may display to a human, or a binary message, which
is typically exchanged between technical systems.

More formally, we express the heterogeneity of
the information exchanged in the given ceremony C
by introducing a free type

Information(C) .
We don’t need to specify this type in more detail here,
but we take it to cover objects being used and ex-
changed in the ceremony (cards, PDFs, etc.) as well
as data being transmitted (URLs, binary messages,
etc.). Of course, in some cases, Information(C) may
reduce to the standard type of abstract encrypted mes-
sages typically used in security protocol analysis.

A ceremony C comes with a predefined set of
actions to be performed by a principal with another
one, or many more principals, through the exchange
of some information. Actions include the sending of
messages by technical systems, but also commands
that humans may give to technical systems.

The most common sets of technical, human and
attacking third party actions can be defined as ternary
relations AC,TS, AC,H and AC,ATP, respectively:

TechnicalActions(C) :=
AC,TS(Technicals, Information,Principals)

HumanActions(C) :=
AC,H(Humans, Information,Principals)

ATPActions(C) :=
AC,ATP({ATP}, Information,Principals)

Actions can be projected onto given principals
TechSystemi or Human j:

TechnicalActions(C)|TechSystemi :=
AC,TS({TechSystemi}, Information,Principals)

HumanActions(C)|Human j :=
AC,H({Human j}, Information,Principals)

The relations may, however, also be binary (e.g.,
a principal broadcasting some information to all other
principals, who thus don’t need to be specified as the
third parameter) or quaternary (e.g., a principal send-
ing a message to a principal through another princi-
pal). So, in general, we define the set of actions of
a ceremony as the union of the set of actions of its
principals:

Actions(C) := TechnicalActions(C) ∪
HumanActions(C) ∪
ATPActions(C)

2.3 Action Labels

A key step of our method is the labelling of actions
and the labelling of principals. We introduce the for-
mer in this subsection, and the latter in the next sub-
section.

Each action of a TechSystemi of a given ceremony
C can be labelled as follows:

• normal, to indicate actions that are prescribed by
the ceremony, analysing a received message and
generating another one to send out;

• bug, to indicate an unwanted technical deviation
from normal, hence occurring without a specific
goal and normally unexpectedly, such as Heart-
bleed or Shellshock;

• malicious, to indicate a deliberate technical devi-
ation from normal, hence implemented with the
deliberate goal of someone’s profit. Examples of
malicious actions are the execution of malware,
such as a backdoor or a trojan, which the pro-
ducer inserted at production time, in which case
the profit would be the producer’s, or the execu-
tion of post-exploitation code injected by the ATP
while the technical system is in use, in which case
the profit would be the ATP’s.

The second and third labels could be usefully
equipped with parameters carrying out the relevant
details of the bug or of the malicious action. More
formally, for each ceremony, the following function
can be defined:

technical action labelC :
TechnicalActions(C)→{normal,bug,malicious}

Each action of a Human j of a given ceremony C
can be labelled as follows:

• normal, to indicate actions that are prescribed by
the given ceremony, such as opening a website,
launching an app or handing a paper receipt over
to another human;

• error, to indicate an unwanted human deviation
from normal, hence occurring without a specific
goal and normally unexpectedly, such as typing
a wrong (i.e., different from the one the human
wanted) password, making the wrong choice or
handing out a wrong item;

• choice, to indicate a deliberate human deviation
from normal, hence occurring with the deliberate
goal of someone’s profit. Example choice actions
include those just given as errors, provided that
they are reinterpreted towards profit. Other exam-
ple choices include attempts to attack a technical
system, for example by exploiting a vulnerability.
Profit could be personal for the human making the
choice or it could be ATP’s profit if the human
choice is due to deception.

Also in this case, the second and third labels could
be usefully equipped with parameters carrying out the
relevant details of the error or of the choice. More
formally, for each ceremony, the following function
can be defined:

human action labelC :
HumanActions(C)→{normal,error,choice}

Finally, the ATP either does nothing (i.e., is not
present at all) or attacks the ceremony. To do the
latter, it may engage in the ceremony by performing
technical actions that are malicious or human actions
of choice:

atp action labelC :
ATPActions(C)→{malicious,choice}

This is where one can see the difference between
our ATP and the Dolev-Yao attacker. The latter con-
trols the network and can impersonate other princi-
pals by acting honestly in a protocol run (but can-
not break cryptography, yet computational extensions
have been proposed). By contrast, our ATP is an ex-
ternal principal and cannot be an insider of the cere-
mony — the attacks that can happen in that case are
covered in our model by appropriately labelled ac-
tions of the humans or technical systems participat-
ing in the ceremony (in particular, labelled as choice,
error, bug or malicious). Similarly, an attacker that
simply participates honestly in a ceremony can be
expressed by humans and technical systems execut-
ing the ceremony with an “empty” external attacking
third party. Collusion between an insider and an out-
sider can also be modelled that way.

The Dolev-Yao attacker can be captured as a spe-
cial case by appropriately labelling the actions and the
principals of the ceremony, as we shall clarify below.

2.4 Scenario Labels and Principal
Labels

We have just seen how to label each action that the
principals of a given ceremony C may execute. The
labelling system can be lifted at the level of principals.
For example, a principal is labelled as

• normal if the principal is a technical system or a
human and all actions of the principal are labelled
as normal; or as

• choice if the principal is a human and all actions
of the principal are either labelled as choice or as
normal; and so on.

More precisely, we identify 11 relevant groups of ac-
tion labels that a principal, (depending on whether it
is a technical system, a human or the ATP) may use,
and define them as a set of scenarios:

scenario1(p) := p ∈ Technicals(C) and
∀a ∈ TechnicalActions(C, p) it is a = normal

scenario2(p) := p ∈ Humans(C) and
∀a ∈ HumanActions(C, p) it is a = normal

scenario3(p) := p ∈ Technicals(C) and
∀a ∈ TechnicalActions(C, p)
it is a = bug or a = normal

scenario4(p) := p ∈ Technicals(C) and
∀a ∈ TechnicalActions(C, p)
it is a = malicious or a = normal

scenario5(p) := p = ATP(C) and
∀a ∈ ATPActions(C, p) it is a = malicious

scenario6(p) := p ∈ Humans(C) and
∀a ∈ HumanActions(C, p)
it is a = error or a = normal

scenario7(p) := p ∈ Humans(C) and
∀a ∈ HumanActions(C, p)
it is a = choice or a = normal

scenario8(p) := p = ATP(C) and
∀a ∈ ATPActions(C, p) it is a = choice

scenario9(p) := p ∈ Technicals(C) and
∀a ∈ TechnicalActions(C, p)
it is a = bug or a = malicious or a = normal

scenario10(p) := p ∈ Humans(C) and
∀a ∈ HumanActions(C, p)
it is a = error or a = choice or a = normal

scenario11(p) := p = ATP(C) and
∀a ∈ ATPActions(C, p)
it is a = malicious or a = choice

This list of scenarios emphasises all combinations of
labels that we derive systematically and deem sig-
nificant for the principals, namely bug+malicious
for technical systems, error+ choice for humans and
malicious+ choice for the attacking third party. The
scenarios show that only technical systems and hu-
mans can take normal actions, while only technical

systems and the attacking third party can take mali-
cious actions, and only humans and the attacking third
party can take choice actions. The scenarios also con-
firm that the attacking third party is the only principal
who can combine both malicious and choice actions.

In order to express the scenarios a principal may
follow, we introduce a function that maps principals
to sets of scenarios, intuitively yielding, for a given
principal, the set of scenarios that the principal may
follow:

scenaC : Principals(C)→ 2{scenario()k|k=1,...,11}

with the obvious constraints that:
• if p ∈ Technicals(C) then scenaC(p) ∈

2{scenario1(p),scenario3(p),scenario4(p),scenario9(p)}

• if p ∈ Humans(C) then scenaC(p) ∈
2{scenario2(p),scenario6(p),scenario7(p),scenario10(p)}

• if p = ATP then scenaC(p) ∈
2{scenario5(p),scenario8(p),scenario11(p)}

This function is in general total because every princi-
pal will be associated to some scenarios but not sur-
jective; hence, some (sets of) scenarios may not have
any principal that is mapped into them in the given
ceremony C. Intuitively, this means that no principal
acts according to those scenarios in the given cere-
mony. We then introduce the scenario label function:

scenario labelC : {scenariok() | k = 1, . . . ,11}→
{normal,bug,malicious,error,choice,

bug+malicious,error+ choice,
malicious+ choice}

This function is in general partial, which means that C
may not allow us to define the principal label on some
scenarios, precisely on those that are not associated
to any principal by the function scenaC. For a given
scenario s, the function is defined as:

scenario labelC(s) =

normal if s = scenario1() or
s = scenario2()

bug if s = scenario3()

malicious if s = scenario4() or
s = scenario5()

error if s = scenario6()

choice if s = scenario7() or
s = scenario8()

bug+malicious if s = scenario9()

error+ choice if s = scenario10()

malicious+ choice if s = scenario11()

The labels of a principal can be defined as the la-
bels of the scenarios the principal may follow accord-
ing to function scenaC(p). More formally:

PLTechnicalsC(p) :=
{l | l = scenario labelC(s) for s ∈ scenaC(p)}

PLHumansC(p) :=
{l | l = scenario labelC(s) for s ∈ scenaC(p)}

PLATPC :=
{l | l = scenario labelC(s) for s ∈ scenaC(p)}

Depending on the actions the various principals
may take in C, it is clear from the above definitions
that:

n(PLTechnicalsC(p)) ≤ 4
n(PLHumansC(p)) ≤ 4

n(PLATPC) ≤ 3

2.5 Building the Full Threat Model
Chart

The full chart of threat models for a given ceremony
C can be built by systematically combining the labels
of all principals in Principals(C), namely by building
the set PLTechnicalsC(p) for each technical system
p, the set PLHumansC(p) for each human p and the
set PLATPC and, finally, by composing their elements
exhaustively. For example, suppose that C features a
human principal and two technical systems that, re-
spectively, use all possible action labels, while no at-
tacking third party is assumed to exist. It means that
we have to build three sets of principal labels:

PLHumansC(Human) =
{normal,error,choice,error+ choice}

PLTechnicalsC(TechSystem1) =
{normal,bug,malicious,bug+malicious}

PLTechnicalsC(TechSystem2) =
{normal,bug,malicious,bug+malicious}

Due to the cardinality of such sets, the full threat
model chart for C has width n(Principals(C)) = 3 and
depth:

n(PLTechnicalsC(Human)) ×
n(PLHumansC(TechSystem1)) ×
n(PLHumansC(TechSystem2)) = 43 = 64.

It is given in Table 1.
As another example, consider a ceremony C′ that

extends C with an attacking third party that only inter-
feres with the human principals in all scenarios, but
not with the technical systems. It means that:

PLATPC′ = {choice} .
As a consequence, the full threat model chart for C′

doubles (the height of) the chart in Table 1, with the
new half being the same as the first half but with an
extra column for the attacking third party repeating
choice for 64 times.

3 USING THE FULL THREAT
MODEL CHART

In this section, we show how our method for the
definition of a full threat model chart can be usefully
applied to existing ceremonies. Depending on the
number of principals and the scenarios they follow,
our aim is to generate a chart in the style of that in
Table 1 for each ceremony, and then use the chart to
identify the relevant threat models for the ceremony.

We discuss two example security ceremonies that
have already been analysed to some extent in the liter-
ature: MP-Auth (Basin et al., 2016; Mannan and van
Oorschot, 2011) and Opera Mini (Radke et al., 2011).
Once their respective full threat model chart is avail-
able, it can be used to address which rows, namely
which threat models have already been investigated.
Additionally, the chart can be used to pinpoint other
relevant threat models that we suggest to consider for
further scrutiny of the ceremony, for example by for-
mal analysis.

3.1 MP-Auth

The MP-Auth ceremony (Basin et al., 2016; Mannan
and van Oorschot, 2011) authenticates a human to a
server using the human’s platform and his personal
device, to which the human has exclusive access. The
main idea of the ceremony is that the human never
needs to enter his password on the platform because
this may be controlled by an attacker. The device has
the public key of the server preinstalled. In short,
the ceremony proceeds as follows: the human enters
the name of the server he wants to communicate with
on the platform, which then initiates communication
with the server. The server in turn communicates with
the device through the platform. The device displays
the identity of the server to the human, who checks if
this corresponds to the server he wants to communi-
cate with. If it does, then he enters his password and
identity on the device. Then, the device sends the lo-
gin information to the platform, which relays it to the
server.

According to our method, this ceremony encom-
passes one human principal and three technical sys-
tems. Precisely:

Humans(MP-Auth) := {Human}
Technicals(MP-Auth) :=

{Platform,Device,Server}

We also allow for an attacking third party, so that the
resulting principals are:

Table 1: The full threat model chart for a ceremony with a human principal, two technical systems and no attacking third
party

Human TechSystem1 TechSystem2 # Human TechSystem1 TechSystem2

1 normal normal normal 33 choice normal normal
2 normal normal bug 34 choice normal bug
3 normal normal malicious 35 choice normal malicious
4 normal normal bug+malicious 36 choice normal bug+malicious
5 normal bug normal 37 choice bug normal
6 normal bug bug 38 choice bug bug
7 normal bug malicious 39 choice bug malicious
8 normal bug bug+malicious 40 choice bug bug+malicious
9 normal malicious normal 41 choice malicious normal
10 normal malicious bug 42 choice malicious bug
11 normal malicious malicious 43 choice malicious malicious
12 normal malicious bug+malicious 44 choice malicious bug+malicious
13 normal bug+malicious normal 45 choice bug+malicious normal
14 normal bug+malicious bug 46 choice bug+malicious bug
15 normal bug+malicious malicious 47 choice bug+malicious malicious
16 normal bug+malicious bug+malicious 48 choice bug+malicious bug+malicious
17 error normal normal 49 error+choice normal normal
18 error normal bug 50 error+choice normal bug
19 error normal malicious 51 error+choice normal malicious
20 error normal bug+malicious 52 error+choice normal bug+malicious
21 error bug normal 53 error+choice bug normal
22 error bug bug 54 error+choice bug bug
23 error bug malicious 55 error+choice bug malicious
24 error bug bug+malicious 56 error+choice bug bug+malicious
25 error malicious normal 57 error+choice malicious normal
26 error malicious bug 58 error+choice malicious bug
27 error malicious malicious 59 error+choice malicious malicious
28 error malicious bug+malicious 60 error+choice malicious bug+malicious
29 error bug+malicious normal 61 error+choice bug+malicious normal
30 error bug+malicious bug 62 error+choice bug+malicious bug
31 error bug+malicious malicious 63 error+choice bug+malicious malicious
32 error bug+malicious bug+malicious 64 error+choice bug+malicious bug+malicious

Principals(MP-Auth) := Humans(MP-Auth) ∪
Technicals(MP-Auth) ∪
ATP(MP-Auth)

The most general case in which every principal gets
all possible labels sees:

n(PLHumansMP-Auth(Human)) = 4
n(PLTechnicalsMP-Auth(Platform)) = 4

n(PLTechnicalsMP-Auth(Device)) = 4
n(PLTechnicalsMP-Auth(Server)) = 4

n(PLATPMP-Auth) = 2

Hence, the full threat model chart has 44 · 21 = 512
lines. The threat models considered in previous
work (Basin et al., 2016) can be reinterpreted in our
chart as shown in Table 2.

Table 2: The two threat models already considered for the
MP-Auth ceremony

Human Platform Device Server ATP

(a) error normal normal normal malicious
(b) choice normal normal normal malicious

However, our chart also highlights at least three
more relevant threat models that haven’t been consid-
ered yet. These are summarised in Table 3.

Table 3: Additional threat models relevant for the MP-Auth
ceremony.

Human Platform Device Server ATP

(c) error bug normal normal malicious
(d) error normal bug normal malicious
(e) choice malicious normal normal malicious

Threat model (c) considers a human that makes er-
rors while interacting with a buggy platform under the
attack of an ATP; (d) considers the interaction with a
buggy device; (e) considers a malicious platform and
a malicious ATP as well as a human agent who de-
cides to misbehave. It is clear that our chart helped
distill out relevant threat models that have been ne-
glected so far, and that a formal analysis is required
to detect potential vulnerabilities entailed by the new
threat models. In fact, differently from (a) and (b) in
Table 2, the new cases in Table 3 add potential weak
points that might lead to new attacks.

3.2 Opera Mini

The Opera Mini ceremony (Radke et al., 2011) be-
gins with the user of a smartphone typing the ad-
dress of his bank’s website into the Opera Mini web
browser. HTTPS connections are opened between the
smartphone and Opera’s Server, and between Opera’s
server and the bank’s server. The request for the
page is then passed through to the bank, which replies
with its customer login page. The Opera server ren-
ders this page and sends the compressed output to
the user’s smartphone device. On the smartphone,
Opera Mini then displays the webpage, including the
padlock symbol. The user sees the padlock symbol
and, if he chooses to input his login information and
password, then this is sent back to the bank’s server
via the Opera encrypted channel, decrypted at the
Opera Server, and then re-encrypted and sent on to
the bank’s server via the HTTPS channel.

We don’t allow for an attacking third party here,
so, according to our method, the principals of the cer-
emony are:

Humans(Opera-Mini) := {Human}
Technicals(Opera-Mini) :=

{Device,Opera-Server,Bank-Server}
Principals(Opera-Mini) :=
Humans(Opera-Mini) ∪ Technicals(Opera-Mini)

The most general case in which every principal gets
all possible labels sees:

n(PLHumansOpera-Mini(Human)) = 4
n(PLTechnicalsOpera-Mini(Device)) = 4

n(PLTechnicalsOpera-Mini(Opera-Server)) = 4
n(PLTechnicalsOpera-Mini(Bank-Server)) = 4

Hence, the full threat model chart has 44 = 256 lines.
The only threat model considered in (Radke et al.,
2011) can be reinterpreted in our chart as shown in
Table 4.

However, our chart also highlights at least three
more relevant threat models that haven’t been consid-
ered yet. These are summarised in Table 5.

Table 4: The threat model already considered for the Opera
Mini ceremony.

Human Device Opera-Server Bank-Server

(a) normal bug normal normal

Table 5: Additional threat models for the Opera Mini cere-
mony.

Human Device Opera-Server Bank-Server

(b) error normal normal normal
(c) error normal normal malicious
(d) choice normal normal normal

The threat model (a) analysed in (Radke et al.,
2011) considers just a buggy platform. We believe
that it would be interesting to consider also threat
model (b), where the human simply makes errors us-
ing the Opera Mini browser possibly, threat model
(c), under the presence of a malicious Bank-Server.
Threat model (d), instead, presumes that the 3 techni-
cal systems don’t deviate from their specification but
the human deliberately does in order to seek an ad-
vantage.

4 THE DANISH
MOBILPENDLERKORT

As a more detailed example, let us consider the
inspection ceremony for the mobile transport ticket in
Denmark, which is known to have two vulnerabili-
ties (Giustolisi, 2017). It involves five principals, two
of which are human beings (ticket holder and ticket
inspector). Despite the combinatorial explosion due
to the number of principals and actions, it is inter-
esting to dissect some combinations, especially those
in which both human principals deviate from the pre-
scribed ceremony.

4.1 Description

As a precondition, the human downloads on his phone
a specific app, called Mobilpendlerkort, which allows
the human to buy a ticket using a credit card. The
human gives the phone his personal details and trav-
elling preferences, which the phone then forwards to
the train company’s server. This server sends back to
the phone a QR code that encodes a signed version of
the human’s travelling preferences. Upon request of
the ticket inspector, the human shows the phone with
the QR code, and the inspector visually checks the
authenticity of the ticket. Then, the inspector checks
the validity of the barcode via a ticket scanner, which
has access to the verification key needed to validate
the signature on the QR code. Finally, the scanner

emits a green light if the verification succeeds, a red
light otherwise. Additionally, the inspector may ask
the human to show a valid ID document to check the
human’s identity.

We identify the following principals in the cere-
mony (where, for simplicity, we have considered the
phone and the ticketing app as a single technical sys-
tem):

Humans(Danish-Mobil) := {Human, Inspector}
Technicals(Danish-Mobil) :=

{Phone,Scanner,Server}
Principals(Danish-Mobil) :=

Humans(Danish-Mobil) ∪
Technicals(Danish-Mobil) ∪

ATP(Danish-Mobil)

The most general case with legitimate principals get-
ting all possible labels sees:

n(PLHumansDanish-Mobil(Human)) = 4
n(PLHumansDanish-Mobil(Inspector)) = 4
n(PLTechnicalsDanish-Mobil(Phone)) = 4

n(PLTechnicalsDanish-Mobil(Scanner)) = 4
n(PLTechnicalsDanish-Mobil(Server)) = 4

We also assume the attacking third party to only mis-
behave as formalised by its two labels, therefore:

n(PLATPDanish-Mobil) = 2

Hence, the full threat model chart has 45 · 21 = 2048
lines.

4.2 Threat Models

We focus on three threat models derived from our
chart. The threat models (a) and (b) in Table 6 have
been considered in (Giustolisi, 2017) and shown to
lead to vulnerabilities. The additional threat model
(c) in Table 7 provides new insights about a potential
yet realistic attack to the ceremony.

More in detail, threat model (a) considers a human
who chooses to forge the screen of the app that dis-
plays the ticket details. The human chooses not to use
the original app, but installs a fake app on his phone
so as to mimic both watermark and background of the
original app. This threat model sees the inspector only
choose to visually check the ticket details and not to
scan the signed QR code. This is routine in Metro or
local trains (Giustolisi, 2017). This vulnerability no-
tably doesn’t require an attacking third party because
the human takes advance of an inspector who chooses
to deviate from the ceremony.

Threat model (b) differs from the previous one as
the inspector doesn’t deviate from the protocol and
there is an attacking third party. The latter plays the

role of a ticket holder who buys a valid ticket but
then chooses to send the signed QR code to the hu-
man. Then, the human uses a fake app as in (a) to
mimic watermark and background of the original app
and display the QR code sent by the attacking third
party. Notably, both the scanner and the inspector fol-
low the ceremony. This vulnerability, hence, enables
a ticket holder to buy a valid ticket that can be shared
with other people to travel for free. More specifically,
the attack is possible because the QR code doesn’t in-
clude the personal details of the ticket holder. Thus,
a valid QR code can be reused by different people.
The attacking third party is essential to signify the
attack and provides a way to reason about collusion
among different principals in a quite abstract and gen-
eral manner.

Threat model (c) has all principals except the
phone behave as normal and also features an attack-
ing third party active towards the phone, hence be-
having as malicious. This threat model represents a
form of collusion of the attacking third party with the
human’s phone, for example with the phone running
some malware on behalf of the attacking party. As a
consequence, the phone is enabled to steal a valid QR
code from a ticket bought by the human and send it
back to the attacking party, who, in turn, can redis-
tribute tickets to colluding phones.

Threat model (c) has not been considered so far
and arises here thanks to our charting method. To
demonstrate the relevance of the chart we analysed
threat model (c) using the formal and automated tool
Tamarin, which enables the unbounded verification of
security protocols, although it is important to high-
light that our method can be used with any tool for
the analysis of security protocols and ceremonies.

4.3 Formal Analysis

Tamarin (Tamarin, 2018) allows one to analyse reach-
ability and equivalence-based properties in a sym-
bolic attacker model. We chose Tamarin mainly be-
cause of its expressive input language based on mul-
tiset rewriting rules. It can be used to easily specify
customary threat models derived from our chart.

A Tamarin rule has a premise and a conclusion and
operates on a multiset of facts. Facts are predicates
that store state information. Executing a rule means
that all facts in the premise are present in the current
state and are consumed in favour of the facts in the
conclusion. Tamarin supports linear facts, which may
be consumed by rules only once, and persistent facts,
which may be consumed by rules arbitrarily often.

A fundamental choice is to exclude Tamarin’s
built-in attacker model (i.e., the Dolev-Yao attacker)

Table 6: The two threat models already considered for the Danish-Mobil ceremony.

Human Phone Scanner Server Inspector ATP
(a) choice malicious normal normal choice —
(b) choice malicious normal normal normal choice

Table 7: An additional threat model relevant for the Danish-Mobil ceremony.

Human Phone Scanner Server Inspector ATP
(c) normal malicious normal normal normal malicious

in favour of the threats provided by the line in our
chart model. More specifically, the communication
among principals is modelled by non-persistent pri-
vate channel rules. Human, Scanner, Server, and In-
spector are labelled as normal, hence their Tamarin
specifications are the ones prescribed by the cere-
mony. Phone and ATP are labelled as malicious,
hence they have deviating behaviours which are cap-
tured by the Tamarin rules below.1 Due to space limi-
tations, we assume basic familiarity of the reader with
Tamarin and only discuss the main facts and rules.

rule Pleaks:

[!Pstore($P,’P_5’,<s1, signed_qr>)]

--[PleakstoATP(’ticket’,signed_qr)]->

[Out_S($P, $ATP,’leak_ticket’,signed_qr)]

rule Pfw:

[In_S($ATP,$P,’fake_ticket’,signed_qr_atp),

!Pstore($P,’P_5’,<s1, signed_qr>)]

--[Pgetsfake(’ticket’,s1,signed_qr_atp)]->

[Out_S($P, $H,’fw_ticket’,<s1,signed_qr_atp>)]

rule ATPgets:

[In_S($P,$ATP,’leak_ticket’,signed_qr)]

--[ATPKnow($P,signed_qr)]->

[!ATPK($P,signed_qr)]

rule ATPsends:

[!ATPK($P,signed_qr)]

-->

[Out_S($ATP, $PP,’fake_ticket’,signed_qr)]

The fact !Pstore formalises a phone storing the
ticket purchased by the traveller, while the fact !ATPK
expresses the knowledge of the ATP, and is con-
veniently instantiated to a signed QR code. Rules
Pleaks and Pfw model behaviours of a malicious
phone that respectively leaks a signed QR code
(signed qr) to the ATP and forwards another signed
QR code sent by the ATP (signed qr atp) to the
human. Rules ATPgets and ATPsends model be-
haviours of a malicious ATP that respectively receives
a signed QR code from a malicious phone and for-
wards it to a different malicious phone. We argue that

1The full Tamarin code is available for review
at the anonymous link https://www.dropbox.com/s/
o93hq0bh75lpxqk/mobilpendlerkort.spthy?dl=0.

these rules reflect very basic malicious behaviours for
phone and ATP.

We check one of the main security properties for
a ticketing ceremony, namely, that two different hu-
man beings cannot ride with the same ticket. This is
formalised in Tamarin by the following lemma:

lemma oneticketpertraveller:
"All h1 h2 s #i #j. OK(h1,s)@i &
OK(h2,s)@j & i<j ==> h1=h2"

The label OK(h,s) expresses a successful verifica-
tion of a ticket with serial number s and ticket holder
h by a ticket inspector. Thus, the property says that
two distinct verifications of a ticket with the same se-
rial number should concern the same ticket holder.

Tamarin finds an attack that violates the stated
property and provides a graph that details the steps
of the attack. We focus on two crucial steps.

The first step is outlined in Figure 1, in which
the conclusion of rule P 5get is consumed by the
premises of rules Pleaks and ChanOut S, thus creat-
ing two branches. The former rule leaks the signed
QR code to the ATP, while the latter forwards the
ticket to the human, who notably doesn’t detect that
something bad is happening.

The other crucial step is outlined in Figure 2,
which depicts a portion of what follows in the branch
due to the rule Pleaks. One of the premises of the
rule Pfw is satisfied by a signed QR code that was
purchased by another traveller but is rerouted by the
ATP through the malicious phones. The other premise
is satisfied by the fact !Pstore, which stores the cor-
rect ticket details of the current traveller. The mali-
cious phone combines the correct ticket details with
the signed QR code forwarded by the ATP, and for-
wards the resulting fake ticket to the human. Later,
during ticket inspection, the fake ticket is successfully
verified.

Although the attack mechanism is similar to the
one described in the previous threat model, the at-
tacking party doesn’t need to create a fake ticket but
just to redistribute the signed QR code from one ma-
licious phone to another. The consequences on the
ticket holder are more serious in this case. The holder
is unaware that his ticket is being reused by someone

Figure 1: A snapshot of a portion of the attack graph provided by Tamarin. The phone leaks part of the ticket to the ATP.

Figure 2: A snapshot of a portion of the attack graph provided by Tamarin. The phone combines the details of the correct
ticket with the signed QR code provided by the ATP.

else. However, post-analysis techniques may reveal a
misuse of fake tickets, hence suggest a software up-
date to the scanner so that the scanner would inval-
idate the fake ticket (further legal action against the

ticket holder could follow).
It is clear that the full threat model chart allows us

to appreciate how the same overarching attack mech-
anism may be used in different scenarios according to

the selected threat model. As we have seen, different
consequences may arise, thus bringing novel insights
to a focus.

5 CONCLUDING REMARKS

The method that we proposed allows one to build
the chart of all threat models for a given security cer-
emony upon the basis of the relevant principals (thus
identifying the columns of the table) and their capa-
bilities (thus identifying the rows of the table). The
security analyst can then relate the threat models that
have already been considered, if any, to those that
haven’t and, in every case, address all possible threat
models of interest pragmatically.

We believe that our formalisation of the ceremony
principals based on their actions provides a seman-
tics that is, in some sense, more operational than the
one that is traditionally considered for security proto-
cols. For example, notions such as impersonation and
collusion are neatly represented through our approach
by endowing principals with appropriate functioning
or behaviour. Still, we are aware that the notions that
we have introduced in this paper are quite coarse and
in need of a more fine-grained formalisation.

The research ahead of us is clearly defined: how to
cope with the size and complexities of the full threat
model chart. One approach could be the description
of appropriate measures and weights to prioritise the
different threat models so as to create an ordered list.
The given ceremony could then be verified, in turn,
against each item of the list.

Another approach could be the definition of meth-
ods to handle the full threat model chart in one go,
perhaps parameterising the findings upon the threat
model. We have demonstrated that Tamarin can be
customised to dealing with a specific threat model ex-
tracted from the chart, hence disposing with the tra-
ditional Dolev-Yao attacker model; however, it is not
yet clear whether and how Tamarin could scale up to
the challenges identified here. We are aware that these
challenges stretch out the requirements traditionally
put on tool support, because the formal analysis will
have to identify not only an attack but also the threat
models that substantiate it.

With humans increasingly immersed in a plethora
of security ceremonies, this research promises consid-
erable impact on both modern technologies and mod-
ern society.

REFERENCES

Basin, D. A., Radomirovic, S., and Schmid, L. (2016).
Modeling Human Errors in Security Protocols. In
Computer Security Foundations Symposium (CSF),
pages 325–340. IEEE CS Press.

Bella, G. and Coles-Kemp, L. (2012). Layered analysis of
security ceremonies. In 27th IFIP TC 11 Informa-
tion Security and Privacy Conference, pages 273–286.
Springer.

Bella, G., R.Giustolisi, and G.Lenzini (2018). In-
valid Certificates in Modern Browsers: A Socio-
Technical Analysis. IOS Journal of Computer Secu-
rity, 26(4):509–541.

Dolev, D. and Yao, A. (1983). On the security of public key
protocols. IEEE Transactions on information theory,
(2):198–208.

Ellison, C. M. (2007). Ceremony design and analysis. IACR
Cryptology ePrint Archive, page 399.

Giustolisi, R. (2017). Free Rides in Denmark: Lessons from
Improperly Generated Mobile Transport Tickets. In
NordSec, LNCS 10674, pages 159–174. Springer.

Hall, J. (2018). SplashData’s Top 100 Worst Passwords of
2018. https://www.teamsid.com/splashdatas-
top-100-worst-passwords-of-2018/.

Karlof, C., Tygar, J. D., and Wagner, D. (2009).
Conditioned-safe Ceremonies and a User Study of an
Application to Web Authentication. In SOUPS. ACM
Press.

Mannan, M. and van Oorschot, P. C. (2011). Leveraging
personal devices for stronger password authentication
from untrusted computers. Journal of Computer Se-
curity, (4):703–750.

Martimiano, T. and Martina, J. E. (2018). Daemones Non
Operantur Nisi Per Artem (Daemons Do Not Operate
Save Through Trickery: Human Tailored Threat Mod-
els for Formal Verification of Fail-Safe Security Cer-
emonies). In Security Protocols 2018, LNCS 11286,
pages 96–105. Springer.

Mitnick, K. D. and Simon, W. L. (2001). The Art of De-
ception: Controlling the Human Element of Security.
John Wiley & Sons.

Radke, K., Boyd, C., Nieto, J. M. G., and Brereton, M.
(2011). Ceremony Analysis: Strengths and Weak-
nesses. In 26th IFIP SEC, pages 104–115. Springer.

Soukoreff, R. W. and MacKenzie, I. S. (2001). Measur-
ing Errors in Text Entry Tasks: An Application of the
Levenshtein String Distance Statistic. In Extended Ab-
stracts of CHI, pages 319–320. ACM Press.

Stajano, F. and Wilson, P. (2011). Understanding scam vic-
tims: seven principles for systems security. Commun.
ACM, (3):70–75.

Tamarin (2018). The Tamarin User Manual. https:
//tamarin-prover.github.io.

